Program Overview
The goal of this Center for Excellence in Translational Research is to develop small molecule inhibitors of enveloped virus entry and test their efficacy in animal models of disease. The underlying hypothesis is that enveloped viral entry is replete with therapeutic targets to which small molecule inhibitors can be developed, blocking receptor engagement, membrane fusion, and cellular trafficking. Most classes of licensed antiviral drugs block intracellular steps of the replication cycle, often through interfering with virally encoded enzymes required for replication. A handful of antiviral agents block enveloped virus entry: maraviroc, a small- molecule that blocks engagement of the CCR5 co-receptor by gp120 of human immunodeficiency virus-1; enfuvirtide, a synthetic peptide that binds gp41 of HIV1 and interferes with fusion; and amantadine/rimantidine, which blocks the M2 ion channel of certain strains of influenza A virus to prevent release of the viral ribonucleoprotein segments into the cell. That paucity of synthetic entry inhibitors starkly contrasts with the natural protection mechanism of neutralizing antibodies that frequently block viral entry. This CETR will advance two general approaches to small molecule inhibition of viral entry: direct targeting of viral envelope proteins; and specific targeting of cellular factors requisite for infectious virus entry. Targeting envelope proteins has the advantage that the small molecules do not need to enter cells, thus eliminating uptake and potential export concerns, and such inhibitors may be less likely to have unwanted interactions with cellular proteins. Targeting cellular proteins offers the attractive though unproven possibility to inhibit the entry of multiple viruses with a single small molecule. A team of 6 investigators working on interdependent projects will discover and advance small molecule inhibitors of both categories.